Современное образование - фундаментальная проблема человеческой жизнедеятельности, её источников и ресурсов. Образование вместе с воспитанием и обучением могут быть отнесены к числу глобальных проблем, ибо вопросы, встающие перед человечеством, содержательно сводятся к одному, - что такое личность, каким образом совершается процесс ее социализации, какое место в нем занимают социальные субъекты образования. Образование начинает осознаваться в качестве неотъемлемой основы человеческого существования, его жизненного пространства.
Оптимизация образования.doc
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Вариационное исчисление для компактных экстремумов в H1 возникло недавно ([1], [2], [3]). Начиная с 20–х годов прошлого века и вплоть до настоящего времени, основное внимание математиков, исследовавших чрезвычайно важные для приложений вариационные задачи в пространствах Соболева, уделя- лось задачам на абсолютный экстремум и условный абсолютный экстремум (см. [4], [5], [6]). Краткий обзор классических условий абсолютного экстремума рассмотрен в п. 2.1. Однако такой подход жестко ограничивает класс допустимых интегральных функционалов. Глубинные причины отсутствия неабсолютных локальных экстремумов у вариационных функционалов в пространствах Соболева были вскрыты в замечательной теореме И.В. Скрыпника ([7]). Теорема утверждает, что основной вариационный функционал дважды дифференцируем по Фреше только тогда, когда в окрестности данной точки интегрант чисто квадратичен по y′: f (x, y, y′) = P (x, y) + Q(x, y) · y′ + R(x, y) · (y′)2. Этот результат исключает (в неквадратичном случае) применение традиционных аналитических методов нахождения локального экстремума и по сути свидетельствует об отсутствии неабсолютных локальных экс- тремумов в рассматриваемой ситуации. Таким образом, компактные экстремумы в H1 играют примерно ту же роль, что и локальные экстремумы в C1, т.е. локальное вариационное исчисление в H1 превращается в локально компактное исчисление. Основной объект, рассмотренный в этом дипломе, — компактные экс- тремумы (или K–экстремумы) вариационных функционалов в про- странстве Соболева H1 функций одной переменной. Диплом построен следующим образом. В первой главе (см. [8], [9]) изложены основы общей теории компактных экстремумов функционалов в гильбертовом пространстве. Здесь выясняется, что «K–понятия» (K–экстремумы, K–непрерывность, K–дифференцируемость и т.д.) хорошо работают, когда известна удобная система универсальных компак- тов, поглощающих все остальные компакты. В гильбертовом пространстве такую систему образуют компактные эллипсоиды. Фундаментальную роль играет тот факт, что индуктивный предел шкалы банаховых пространств, порожденных K–эллипсоидами, совпадает с исходным гильбертовым пространством. Это позволяет получить K–аналитические условия для K–экстремумов, аналогичные классическим. Во второй главе (см. [14], [5], [7]) переходим к вариационным функционалам в H1 и рассмотрим их K–аналитические свойства. Базовым здесь является понятие псевдоквадратичного интегранта, допускающего пред- ставление в виде f (x, y, y′) = P (x, y, y′) + Q(x, y, y′) · y′ + R(x, y, y′) · (y′)2, коэффициенты которого ограничены локально по y и глобально по x и y′. Такой подход позволяет уйти от традиционных жестких квадратичных оценок интегранта и существенно расширяет класс исследуемых функ- ционалов. Рассмотрены вейерштрассовские псевдоквадратичные классы гладкости W K2(z), W 1K2(z) и W 2K2(z), попадание интегранта в которые гарантируeт, соответственно, K–непрерывность, K–дифференцируемость и повторную K–дифференцируемость Φ(y). При этом классические ана- литические свойства у Φ(y), как правило, отсутствуют (как и следовало ожидать, с учетом теоремы Скрыпника ([7])). Описаны простые достаточные условия попадания интегранта в вейерштрассовские классы, поз- воляющие легко строить конкретные примеры. В третьей главе (см. [12], [17], [18], [14]) рассмотрим ряд классических, как необходимых, так и достаточных условий локального экстремума в C1 обобщен на случай K–экстремума вариационного функционала в H1 (уравнение Эйлера–Лагранжа, условие Лежандра, условие Лежандра– Якоби). В частности, выполнение классических достаточных условий экс- тремума в гладкой точке дает информацию и о негладкой части области реализации экстремума (не входящей в C1). Помимо этого, рассмотрено новое достаточное условие экстремума в терминах гессиана интегранта и подробно изучена обратная задача для уравнения Эйлера–Лагранжа, где ситуация заметно отличается от гладкого случая.
Размышления на тему положительного и отрицательного влияния музыки на человека.

Протопопова Инна Сергеевна (МБОУ СОШ № 18 поселка Паркового г. Тихорецка) 1.Проектная методика на уроках иностранного языка Повышение требований к коммуникативному аспекту владения иностранным языком стимулирует учителей искать новые формы и приемы обучения для повышения мотивации учащихся, развития их творчества, инициативности, вовлечения детей в активный познавательный процесс. И выбор останавливается на проектной методике, потому что проектная методика характеризуется высокой коммуникативностью и позволяет создать творческую исследовательскую атмосферу. Проектная форма работы является одной из актуальных технологий, которая позволяет учащимся применить накопленные знания по английскому языку, реализовать искусство планирования, изобретения, созидания, исполнения и оформления. 2. Схема построения проекта. Работа над проектом представляет собой целостную и последовательную систему, которая происходит поэтапно: - Беседа с учащимися. Задается тема исследований; - Определить исполнителей. Учащиеся объединяются в творческие группы или работают индивидуально; - Выявить идеи, задачи, цели и пути их решения; - Определить сроки консультаций-проверок; - Уточнить индивидуальный план проекта каждой группы или учащегося; - Задания должны соответствовать индивидуальному уровню, на котором находится каждый участник проекта; - Организовать поисковую и исследовательскую деятельность учащихся при работе над проектом. - Использовать межпредметные связи; - Проверить проект в черновом варианте; - Продолжать совершенствование и расширение лексического запаса. - Развивать навыки написания сочинений на английском языке, улучшаются и закрепляются основные языковые категории; - По мере создания проектов возможна выставка лучших работ; - На протяжении изучения определенной темы надо использовать нетрадиционные формы уроков; - Оформить проект начисто; - Презентация проекта и его защита; - Оценить проект; 3. Оценка проекта Оценивать проекты приходится, хотя и трудно и сложно добиться объективности. Необходим дифференцированный подход. Оценка ученика зависит от того, насколько качественно и полно раскрыта тема. 4.Исправление ошибок Когда учитель проверяет черновик проекта и совместно обсуждается и дорабатывается план, определяется, как лучше преподнести исследуемый материал вот в это время и есть необходимость исправления ошибок. При создании проекта учащиеся сталкиваются с трудностями и при работе с ним могут возникнуть кое-какие отрицательные моменты 5. Роль учителя в помощи создания проекта Важная роль в проектной методике отводится учителю. Роль учителя – это роль наставника, помощника и участника. Учителю нужно быть инициатором, предварять план действий, помогать справляться с проблемами и трудностями, проявлять гибкость и быть готовым к изменениям. 6. Метод проектов – актуальность и результативность. Использование новых информационных технологий не только оживляет и вносит новизну в учебный процесс, но и открывает большие возможности для расширения образовательных рамок и несет в себе огромный мотивационный потенциал и способствует принципам индивидуализации обучения.

Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее