Традиционный подход к преподаванию геометрии приводит к малой популярности этого предмета, особенно среди учащихся, далёких от математики. Наиболее очевидная причина этого заключается в том, что формулировки и доказательства теорем заучиваются, но не проверяются. Такой стиль обучения нацелен на развитие некритического, нетворческого мышления и естественно отторгается современными школьниками. Помочь решить возникающие в связи с этим проблемы может учебно-методический комплект (УМК) «Живая Математика», который сформирован на основе программы Geometry’s Sketchpad (в русском переводе «Живая Математика»), переведенной на русский язык и адаптированной Институтом новых технологий.
Разобрано подробно решения несколько заданий такого вида: Для какого наибольшего целого числа А формула ( (x <= 9) -> (x*x <= A) ) и ( (y*y <= A) -> (y <= 10) ) тождественно истинна (то есть принимает значение 1 при любых целых неотрицательных значениях переменных x и y)?
Предложены задания для самостоятельного выполнения с ответами.
Презентация посвящена примерам использования графов для решения разнообразных задач в курсе информатики и математики 5-7 классов. Теория графов (греч. grapho – пишу, черчу, рисую) возникла в первой половине XVIII века. Еще в 1736 году Леонард Эйлер впервые опубликовал работу по графам, содержащую решение задачи о Кенигсбергских мостах. Широкое развитие теория графов получила с 50-х годов XX века в связи со становлением кибернетики и развитием вычислительной техники. Простота теоретических сведений, наглядность и доступность теории графов помогает решать довольно сложные задачи. В курсе информатики в 5, 6 и 7 классах рассматривается множество задач, решение которых облегчается благодаря наглядному использованию информационных моделей на графах. Поэтому целесообразно познакомить детей с теорией и способами решения задач при помощи графов.