Живя в Калининграде, мы мало знаем о выдающихся личностях, живших в нашем городе. Даже о трудах известного философа И. Канта калининградцам известно немного. Это мы установили благодаря опросу студентов и преподавателей колледжа, т.е. одних из эрудированных слоёв нашего общества.
Мы решили найти информацию о выдающихся математиках, которые внесли существенный вклад в развитие математической науки. Владея такой информацией, нам просто нужно ощутить себя жителями города с большим научным потенциалом и соответствовать этому уровню, гордиться своим уникальным городом так, как гордятся жители Москвы, Петербурга, Праги или Киева. Мы думаем, что в России наряду со столицами, признанными культурными центрами, есть и такой замечательный город с большой историей и блестящим будущим, в котором будут взаимовыгодно сочетаться культурно-исторические традиции России и Европы.
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Исследовательскую работу выполнил ученик 4 класса. Направление- естественно-математическое.
Содержание:
• Введение
• Основная часть:
1) Немного истории;
2) Создание модели физической задачи;
3) Проведение лабораторного опыта;
4) Выводы;
• Заключение
• Список используемых источников
• Приложения
Работа содержит исследование системы сложных заданий по теме «Решение квадратных уравнений и неравенств с параметрами», в основу, которой положена классификация уровней развития усвоения деятельности по В. П. Беспалько. В данной работе эффективным является распределение задач по уровням развития деятельности, что позволило создать систему заданий для диагностики результативности усвоения темы: «Решение квадратных уравнений и неравенств с параметрами», применение которой при подготовке к экзамену приводит к положительному результату и помогает преодолению психологического барьера при решении задач из второй части. Из данной системы заданий легко подготовить индивидуальные карточки для самостоятельной работы из задач трех групп Работа будет интересна учащимся 8 – 9 классов и учителям математики.Учителя математики могут использовать её, как методическое пособие при подготовке к итоговой аттестации, а также для контроля знаний учащихся.