На современном этапе развития общества школьное образование не может оставаться в стороне от процессов модернизации. Сложившиеся социально – экономические условия требуют сегодня от человека умения ориентироваться в информационных потоках, осваивать новые технологии, самообучаться, искать и использовать недостающие знания, обладать такими качествами, как универсальность мышления, динамизм, мобильность. Речь идёт о новой единице измерения образованности человека – функционально грамотной личности, который способен практически разрешать нестандартные, значимые для себя ситуации, используя для этого знания, умения, способности, опыт. Именно на школу возложена миссия дать детям те знания, сформировать те умения и развить те навыки, которыми современный ученик сможет воспользоваться в дальнейшем и получить возможность стать успешным в жизни. И вот на этом этапе развития образовательного учреждения совершенствование качества обучения и воспитания напрямую зависит от уровня профессиональной подготовки учителя.
В работе рассмотрены многочисленные способы решения уравнений второй степени с одним неизвестным как аналитические, так и графические. Причем сделано это в общем виде на теоретическом уровне. Кроме обобщения и систематизации общеизвестных фактов, есть некоторые нетривиальные разделы: рассмотрение вида некоторых частных квадратных уравнений в за-висимости от их корней, несколько шутливое доказательство невозможности третьего корня в квадратном уравнении, забытый способ сетчатых номограмм для решения квадратных уравнений. Форма статьи, накладывающая определенные ограничения на объем изложения вынуждает многие вопросы оставить вне поля рассмотрения. Так, например, рассмотрены не все графические способы решения уравнений, среди которых есть и такой, который допускает решение уравнений не только с действительными, но и с комплексными корнями, но это выходит за рамки курсовой работы по своей сложности. Хотелось бы привести примеры компьютерных программ для решения квадратных уравнений. Совсем не рассматривался важный старинный раздел, с которого начинается история квадратных уравнений – решение текстовых задач, приводящих к квадратным уравнениям. Наконец общеизвестно, что среди всех типов уравнений, изучаемых в школьном курсе, обязательно есть такие, который сводятся в конечном итоге к квадратным уравнениям. Кстати, в этом еще один аспект актуальности рассмотренной в этой работе темы. Казавшаяся в начале работы избитость и узость темы к концу рассеялись как дым и открылись новые горизонты исследования вопроса.