Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Данная технология была выбрана мною в силу того, что она предполагает большой объем самостоятельной работы, что способствует развитию опыта самостоятельной познавательной деятельности.
В модуль можно включать элементы углубленного и творческого уровня. Поэтому по мере развития и практического достижения базового уровня информационной культуры и культуры операционных действий я считаю целесообразным предложить учащимся работу над проектом, включающую в себя следующие этапы:
Этап 1. Уточнение предметной области.
Этап 2. Извлечение знаний. Происходит поиск и отбор материала по выбранной тематике. Источниками знаний являются учебники, справочная литература, информационные ресурсы баз данных, ресурсы Интернет.
Этап 3. Структурирование знаний. Определяются терминология, список основных понятий и атрибутов, понятия классифицируются по содержанию, устанавливаются логические связи между ними.
Этап 4. Представление материала. Определяется и реализуется форма представления материала. Это может быть реферат, альбом, рекламный буклет, информационный проспект, выпуск газеты, создание сайта и т. п.
Использование в учебном процессе различных методов и приёмов, направленных на здоровьесбережение, позволяет учащимся более успешно адаптироваться в образовательном и социальном пространстве, раскрыть творческие способности.
Решая геометрические задачи, думаем, все, однажды задавались вопросом, нельзя ли одну и ту же задачу решить разными способами. Для решения геометрических задач на отношения длин есть метод, позволяющий быстрее и проще доказывать известные теоремы и решать некоторые задачи. В его основе лежит понятие центра масс или барицентра.
Основоположником этого метода был великий древнегреческий мыслитель Архимед. Еще в III в до н. э., он обнаружил возможность доказывать новые математические факты с помощью свойств центра масс. В частности, этим способом Архимед доказал теорему о том, что три медианы треугольника пересекаются в одной точке. Ее способ доказательства отличается от варианта, который рассматривается в школьном курсе геометрии, и мы тоже докажем эту теорему, используя барицентрический метод. Кроме того, интересна возможность применения этого метода к решению задач на отношение длин.