Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Целью моей работы является повышение познавательного интереса с помощью разнообразного использования информационно-коммуникационных технологий.
Использую информационные Интернет-ресурсы по следующим направлениям:
самообразование, дополнительный материал для подготовки к занятиям, изучение опыта коллег в других городах
подготовка к тематическим семинарам школьных и муниципальных методических объединений;
при индивидуальной работе с одаренными детьми и проектной работе с группами учеников.
Решая геометрические задачи, думаем, все, однажды задавались вопросом, нельзя ли одну и ту же задачу решить разными способами. Для решения геометрических задач на отношения длин есть метод, позволяющий быстрее и проще доказывать известные теоремы и решать некоторые задачи. В его основе лежит понятие центра масс или барицентра.
Основоположником этого метода был великий древнегреческий мыслитель Архимед. Еще в III в до н. э., он обнаружил возможность доказывать новые математические факты с помощью свойств центра масс. В частности, этим способом Архимед доказал теорему о том, что три медианы треугольника пересекаются в одной точке. Ее способ доказательства отличается от варианта, который рассматривается в школьном курсе геометрии, и мы тоже докажем эту теорему, используя барицентрический метод. Кроме того, интересна возможность применения этого метода к решению задач на отношение длин.
Развитие личности школьника в системе образования обеспечивается, прежде всего,
через формирование универсальных учебных действий, которые выступают основой
образовательного и воспитательного процесса. Овладение учащимися универсальными
учебными действиями создают возможность самостоятельного успешного усвоения
новых знаний, умений и компетеннтностей, включая организацию усвоения, то есть
умения учиться. Эта возможность обеспечивается тем, что универсальные учебные
действия – это обобщенные действия, порождающие широкую ориентацию обучающихся в различных предметных областях познания и мотивацию к обучению.