Предлагается один из вариантов проведения урока математики в 8-м классе по теме «Виды симметрии» с использованием ИКТ и проектной технологии.

Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы

Данный урок проводится в конце учебного года, когда начинается повторение пройденного материала и подготовка к ГИА. Участники: учащиеся 9-го класса с углублённым уровнем подготовки по математике. Урок проводится в форме игры, которая называется «Математический детектив». Учащиеся являются «полицейскими детективами». Они должны работать либо самостоятельно, либо в парах. Учитель объявляет, что пропало знаменитое выска-зывание Леонардо да Винчи. Задача детективов найти его. Проходя через определённые этапы, для учащихся будут открываться части пропавшего высказывания, но не по порядку. А в конце урока они должны составить из этих частей фразу. Лучшие детективы зачисляются в «Полицейскую академию», т.е. получают хорошие отметки.

Данный урок является одним из основных уроков, отведенных в 8 классе на повторение раздела геометрии «Четырехугольники». Много задач из этого раздела встречаются на ГИА и ЕГЭ, поэтому для решения их необходимо твердое владение теоретическим материалом, а именно свойствами заданных плоских фигур, применять эти свойства в ходе вычислений. Для успешного решения геометрических задач необходимо иметь прочные базовые знания, что поможет выделить ключевую идею задачи и наметить план ее решения. Решение геометрических задач требует также иметь необходимые умения логически мыслить, быть внимательным.
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее