Урок литературы "Как хороши, как свежи были розы..." История одной строки" разработан для 10 класса, который входит в раздел "Творчество И.С.Тургенева". В рамках урока рассматриваются три произведения русской литературы: стихотворения И.Мятлева и И.Северянина "Классические розы" и стихотворение в прозе И.С.Тургенева "Как хороши, как свежи были розы...", объединенные одной строкой
kak-horoshi-kak-svezhi-byili-rozyi-urok-literaturyi.doc
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Представлен план-конспект урока химии в 8 классе с использованием ИКТ-ресурсов "Ионные уравнения" (УМК О.С.Габриеляна)

Урок изучения нового материала с использованием технологий ФГОС .Содержит конспект урока, презентацию и анализ.

Данный урок является одним из основных уроков, отведенных в 8 классе на повторение раздела геометрии «Четырехугольники». Много задач из этого раздела встречаются на ГИА и ЕГЭ, поэтому для решения их необходимо твердое владение теоретическим материалом, а именно свойствами заданных плоских фигур, применять эти свойства в ходе вычислений. Для успешного решения геометрических задач необходимо иметь прочные базовые знания, что поможет выделить ключевую идею задачи и наметить план ее решения. Решение геометрических задач требует также иметь необходимые умения логически мыслить, быть внимательным.
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее