Математика в своем развитии от Евклида до современности представляет совокупность теорий, состоящих из предложений, в которых фиксируются общие свойства определенной совокупности математических объектов. Школьный курс математики не выступает в качестве математической теории, однако содержание математики, как теории - это среда, средство и метод обучения учащихся. В этой связи изучение теорем, их доказательство, методы доказательств выступают одной из важных задач школьного курса математики. Математика учит строить и оптимизировать деятельность, вырабатывать и принимать решения. Таким образом, именно на уроках математики формируются универсальные умения и навыки, являющиеся основой существования человека в социуме. Общество заинтересовано в гражданах, которые умеют самостоятельно думать и решать разнообразные проблемы. Такие качества формируются у учащихся в процессе исследовательской деятельности. Доказательство всякой теоремы учащиеся могут получить самостоятельно, если учителем будет грамотно поставлен ряд заданий по выделению основных моментов доказательства. В данной презентации "Основная" обобщены приемы обучению учащихся доказательству теорем на конкретных примерах.
В данном материале представлен опыт учителя по развитию речи у детей с ОВЗ чеоез работу в словесно-художественных альбомах. Положительная динамика подтверждена диагностикой ЗУНов учащихся
Рабочая программа по внеурочной деятельности "Робототехника и лего конструирование" 1-4 классы ФГОС
Современные профессии, предлагаемые выпускникам учебных заведений, становятся все более интеллектоемкими. Информационные технологии, предъявляющие высокие требования к интеллекту работников, занимают лидирующее положение на международном рынке труда. Но если навыки работы с конкретной техникой можно приобрести непосредственно на рабочем месте, то мышление, не развитое в определенные природой сроки, таковым и останется.