Открытый урок краеведения в 4 классе Тема: Обобщение знаний «Путешествие по родному краю»

Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Преподавание математики в начальных классах вальдорфской школы В вальдорфской школе преподавание математики принято делить на три ступени. На первой ступени, охватывающей пять начальных классов, арифметика вырастает из области деятельности, очень тесно связанной с жизненными функциями ребёнка, а затем постепенно пополняется и расширяется изнутри наружу. На второй ступени, в классах с 6-го по 8-ой, в свои права вступает, прежде всего, практический аспект. Решение практических задач преподносится в виде жизненной науки, открывающей ученикам доступ к различным вещам. При этом стремятся, с одной стороны, к близости к жизни и актуальности, и, с другой стороны, - к показу основополагающих взаимосвязей. Переход к третьей ступени, начиная с 9-го класса, характеризуется привнесением рационалистической точки зрения. Для учителей, работающих на основе антропософской педагогики, математика оказывается часто наиболее трудным предметом. Для одних препятствием оказываются привычки, заложенные в собственные школьные годы, для других не складываются в цельную картину многочисленные указания Р. Штайнера. Существующее многообразие подходов к преподаванию математики согласуется с общей философско-методологической базой воспитания и обучения в вальдорфской школе. Сравнительный анализ учебного плана по математике традиционной и вальдорфской школы показывает, что в последней продвигаются значительно быстрее. К примеру, уже в первом классе вводятся четыре основные арифметические операции, причем одновременно. Программы традиционной школы общедоступны, учебный план по математике для первых - пятых классов вальдорфской школы будет приведен ниже. Поэтому учитель может сам убедиться в вышесказанном. Более важным является то, что подходы к преподаванию математики в традиционной и вальдорфской школах совершенно разные по сути. Основное отличие заключается в том, что традиционная школа даёт некий объём знаний, умений, навыков, поэтапно переходя от простого к сложному, зачастую "впихивая" в ученика учебный материал так, что учащийся не может соединиться со знаниями и становится сам учебным материалом. Учителя вальдорфской школы точно представляют себе, как преподносить знания семи-девяти-двенадцатилетнему ребёнку, чтобы они давали перспективу как на дальнейшее обучение, так и на будущую жизнь. Целью и исходным пунктом всего процесса обучения является, прежде всего, ученик, а не учебный материал. Поэтому в центр каждого урока всегда ставится человек, и всё связывается с ним. Педагогика Р. Штайнера смотрит на ребёнка и видит, какие в нём живут способности и задатки, она помогает их здоровому и свободному развитию. Именно ребёнок (без слов, конечно) ставит учителю цель его деятельности. Вальдорфская педагогика вырабатывает у учащихся способности, и не только в области математики, но и в социальном плане. Современное человечество, в общем-то, справедливо, гордится своим критическим мышлением. Оно является важной и ценной способностью человека, так как связано с неустанным поиском, "докапыванием" до истины. Человек, обладающий критическим мышлением, замечает все слабости и изъяны в людях, науке, искусстве, во всём окружающем мире. Но критическое мышление излишне придирчиво, а это ведёт зачастую к его узости и неконструктивности. Поэтому одну из главных своих задач вальдорфская педагогика видит в формировании у детей живого, созерцающего мышления, которое ищет гармонию в окружающем мире, воспринимает все явления и факты позитивно, правдиво, чутко, пластично, подвижно. Оно лишено избирательности фанатизма, назойливости, излишней фантазии. Принципы формирования живого, созерцающего мышления, которое включает в себя как составную часть и критическое мышление, заложены в обучении математике с 1 по 12 класс. Математика в вальдорфской школе является одним из основных предметов, которые преподаются эпохами. Эпоха составляет 2-3 недели обучения, затем наступает перерыв 2-3 месяца, в течение которого дети изучают другие предметы. Такой подход к учебному процессу позволяет: 1. Организовать ритмическое обучение. Каждая эпоха является как бы вдохом, а перерыв — выдохом, 2. Максимально сконцентрироваться, сосредоточиться на изучаемом материале. 3. Быстро продвигаться в пределах эпохи. Дети в промежуток между двумя эпохами, естественно, всё или многое забывают. Но вальдорфская педагогика считает, что забывать не означает терять. Забывать - это значит перерабатывать и развивать дальше полученные знания в рамках душевного, подсознательно, пока ребёнок занят чем-то другим и, к примеру, не считает. Зато когда наступает эпоха счёта, то дети радуются: снова счёт! Они встречают его, как старого знакомого. Через 2-3 дня учащиеся снова погружаются в счёт, и видно, что они ничего не забыли. Знания сами как бы "всплывают". Они будто бы отдыхали, спали, а теперь проснулись отдохнувшими и посвежевшими. Дети, которые имели проблемы со счётом в первую эпоху, в последующую - прекрасно с ними справляются. И это получается вроде бы "само по себе". Но, чтобы это произошло, учебный материал нужно давать "живым". Ведь мёртвое знание не может "взойти", оно может только потеряться. Уроки математики в вальдорфской школе (как впрочем, и все другие) являются ареной воспитания. Логически и арифметика и принципы морали кажутся очень далёкими друг от друга. Тем не менее, ребёнок, обученный арифметике правильными методами, позднее в жизни будет всегда иметь чувство моральной ответственности. Для человеческого сознания переход от 1 к 2, к 3 и т. д. представляется совершенно произвольным. Р. Штайнер в Оксфордском курсе лекций говорил: "Несвойственно прикладывать один боб к другому и давать образующейся кучке бобов каждый раз новое название... Существует другой способ счета, который возник исторически. Люди всегда знали: всё, что мы видим в жизни, всегда составляет нечто целое, мы воспринимаем его как целое. Самые различные вещи могут составлять единство. Это целое и есть точка отсчёта. Числа и операции над ними в вальдорфской школе выводятся из некого единства. Каждое число воспринимается как органическое продолжение единства. Ребёнок привыкает к целостному восприятию вещей и сохраняет эту способность в жизни. Этот навык целостного восприятия оказывает удивительно глубокое влияние на душу и дух учеников. Привычка механически складывать отдельные единицы питает внутреннюю склонность души к жадности и зависти. Идя от целого к частям, мы ослабляем склонность к стяжательству и укрепляем то, что в благородном, платоновском смысле, можно назвать умеренностью, воздержанностью. Притяжение и отталкивание, симпатии и антипатии в области морали интимно связаны с характером первоначального соприкосновения ребёнка с миром чисел. Хотя, на первый взгляд, и нет связи между тем, как мы обращаемся с числами, и моральными импульсами, но то, что происходит в душе ребёнка, когда он этому учится, окажет огромное влияние на его восприятие великих моральных деяний, на весь его душевный мир, мир симпатий и антипатий, отношение к добру и злу". Если мы у ребёнка сформируем понятие числа, например, 3, как 1 + 1 + 1, то тем самым создадим в детском мышлении стремление к неподвижности. Совсем другое дело, если начать с трех и разделить его на части. Первый подход неизбежно ведёт к идее атомистического строения Вселенной. Второй - понятие целого до изучения его частей - это путь живого воображения, ведущий к пониманию того, что только целое даёт источник существования частей. Подтверждением этого может быть такая аналогия. Как бы не был "умудрен" жук, ползающий по стене кирпичного здания, и каким бы образом он не получал сведения о каждом кирпичике, который он "исследовал", того понятия "дом" которое есть у архитектора здания, он не получит. Поскольку обращение с числом связано с определенной сухостью, то нужно чтобы интеллект не стремился лишь присваивать, захватывать, завоёвывать. Этому должны противостоять сердце и воля. Эгоизм сам собой проникает в расчёты, изменения, сравнения, Исподволь, подбирая соответствующие примеры, вальдорфский учитель вводит в обучение важные моральные принципы. Он никогда не спросит: "Сколько у тебя будет конфет, если ты получишь от Петра - две, от Кати - три?" Учитель сформулирует иначе: "Если ты дашь Петру две конфеты, а Кате - три, то сколько конфет ты подаришь?" В вальдорфской школе нет ничего случайного, ничего не делается просто так, за всем стоит глубинный смысл. Содержание задач, которые дети решают на уроках, подаётся в виде математических историй, весьма поучительных. Эти мини-сюжеты всегда учитывают дифференцированный подход к детям с различными темпераментами. Свойственный педагогике Штайнера гомеопатический уход за темпераментами предполагает арифметику для всех типов темперамента, при этом противоположности темпераментов играют на уроках весьма существенную роль. Уроки математики тесно связаны с рисованием форм. В первом классе рисование форм предшествует письму, до третьего класса оно преподаётся отдельными эпохами, а в четвёртом классе - в рамках других эпох. Впоследствии, в старших классах рисование форм переходит в геометрию. Вальдорфская педагогика придаёт большое значение гармоническому сочетанию противоположностей. Метод полярностей широко используется на уроках математики. Предпринятый флегматиком анализ подхватывается противоположным холерическим темпераментом и синтетически возвращается к целостности. При введении арифметических операций от сложения переходят к вычитанию, от умножения - к делению. После рисования прямых форм всегда рисуют округлые. При ритмических упражнениях всегда сочетают работу тела с внутренней работой, направленной на формирование представлений.
В работе говорится об интеграции урочной и внеурочной деятельности, направленной на развитие творческих способностей учащихся, о способах достижения личностных и метапредметных результатов
Исследовательская работа в 4 классе
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее