Первый урок по теме "Трапеция", 8 класс, учебник Л.С.Атанасян. Второй урок по теме "Четырехугольники", 8класс, учебник Л.С.Атанасян. Третий урок по теме "Первые представления о рациональных уравнениях", 8 класс, учебник А.Г.Мордкович, 2009г.
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Цели: 1. Образовательные: повторить и обобщить знания о треугольнике; доказать теорему о сумме углов треугольника и классифицировать треугольники по углам и сторонам; научиться применять полученные знания при решении задач. 2. Развивающие: развивать геометрическое мышление, интерес к предмету, познавательную и творческую деятельность учащихся, математическую речь, умение самостоятельно добывать знания. 3. Воспитательные: развивать личностные качества учащихся, таких как целеустремленность, настойчивость, аккуратность, умение работать в коллективе; содействовать формированию активной жизненной позиции учащихся.
игра для школьников среднего и старшего возраста.Возрождение математических традиций.
При работе на уроке учащиеся познакомятся с любопытными геометрическими и историческими фактами, оригинальными подходами к доказательству и применению теоремы Пифагора, с решением задач имеющих широкий круг применения в курсах смежных дисциплин и практической деятельности человека. В ходе исследования убедятся, что теорема Пифагора является основой для многих выводов и обобщений в «Евклидовой геометрии» и возможно отрыть свое оригинальное доказательство теоремы.
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее