В работе показаны особенности использования интерактивной доски на уроках математики, рассмотрены возможности интерактивных досок, приведены примеры использования интерактивной доски на уроке математики. в приложении представлены два конспекта урока наглядной геометрии 5, 6 класса, на которых можно эффективно использовать интерактивную доску. Все этапы урока проиллюстрированы слайдами презентации для программного обеспечения Smart.
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Опыт проведения ЕГЭ и пробных работ свидетельствует о необходимости предварительной подготовки учащихся к этой форме контроля. При организации подготовки к экзамену в процессе преподавания необходимо делать определенные методические акценты на те разделы, которые представлены в тестах ЕГЭ и, что особенно важно, оказывать психологическую помощь в подготовке обучающихся к экзаменам. Задача учителя – добиваться от учащихся не формального усвоения программного материала, а его глубоко осознанного понимания. Целенаправленная систематическая подготовка обучающихся к экзамену способствует развитию школьников, формированию их предметной компетентности, повышению качества знаний по предмету.
За время работы в выпускных классах сложилась система подготовки обучающихся к новой форме сдачи экзамена, целью которой является подготовка школьника к успешному написанию теста ЕГЭ, т.е. подготовить его так, чтобы он самостоятельно сумел набрать максимально возможное для него количество баллов. Не нужно пытаться решать с учащимися как можно больше вариантов заданий ЕГЭ предыдущих лет – это неперспективный путь. Намного разумнее учить школьников общим универсальным приемам и подходам к решению заданий соответствующих типов, обучать приемам мыслительного поиска способа решения того или иного задания, интегрированию знаний из разных разделов курса математики, самостоятельной разработке алгоритмов действий.