Идти от целого к части, опираться не на зубрёжку, а на понимание — вот основа методики Шаталова. Учёбу можно сравнить с разглядыванием картины. Если разбить полотно на кусочки и брать их по отдельности, то неизвестно, сложится ли целостное восприятие изображения. Но именно так обычно преподают в школе. А если вначале дать представление о целом, то кусочки легко встанут на свои места, и мозаика сложится.
Прочные знания можно сформировать благодаря умелому структурированию материала, наращиванию информации в оптимальном темпе и её многократному повторению. Пренебрежение мерой в дозировании учебного материала ведёт к тому, что «в одно ухо влетает, а из другого вылетает». Проблему решает не совершенствование системы экзаменов, а методика обучения, усиливающая естественный механизм понимания. Опорный конспект представляется в виде некой графической схемы из элементов, связанных между собой. Удачная схема — находка для учителя и ученика. Ученики выводят из неё ответ, как из красивой формулы.
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Современный этап развития науки характеризуется взаимопроникновени¬ем наук друг в друга, и особенно проникновением математики и физики в дру¬гие отрасли знания.
Связь между учебными предметами является прежде всего отражением объективно существующей связи между отдельными науками и связи наук с техникой, с практической деятельностью людей.
Необходимость связи между учебными предметами диктуется также ди¬дактическими принципами обучения, воспитательными задачами школы, свя¬зью обучения с жизнью, подготовкой учащихся к практической деятельности.
Межпредметные связи в школьном обучении являются конкретным вы¬ражением интеграционных процессов, происходящих сегодня в науке и в жизни общества. Эти связи играют важную роль в повышении практической и научно-теоретической подготовки учащихся, существенной особенностью которой яв¬ляется овладение школьниками обобщенным характером познавательной дея¬тельности.
При работе на уроке учащиеся познакомятся с любопытными геометрическими и историческими фактами, оригинальными подходами к доказательству и применению теоремы Пифагора, с решением задач имеющих широкий круг применения в курсах смежных дисциплин и практической деятельности человека. В ходе исследования убедятся, что теорема Пифагора является основой для многих выводов и обобщений в «Евклидовой геометрии» и возможно отрыть свое оригинальное доказательство теоремы.