Примерная программа по математике составлена на основе федерального компонента государственного стандарта среднего (полного) общего образования на профильном уровне и в свою очередь опирается на авторскую программу по алгебре и началам анализа (профильный уровень) А.Г. Мордковича и программно-методические материалы «Геометрия. 7 – 11 классы» И.М. Смирнова, В.А. Смирнов.- М.: Мнемозина, 2007.
Структура программы
Программа представляет собой документ, включающий восемь разделов:
Титульный лист – структурный элемент программы, содержащий сведения о названии программы.
Пояснительная записка – структурный элемент программы, поясняющий актуальность изучения данного курса, его задачи и специфику, а также методы и формы решения поставленных задач.
Содержание тем учебного курса.
Тематический план.
Календарно-тематическое планирование.
Контрольно-измерительные материалы.
Требования к уровню подготовки обучающихся (по годам обучения).
Учебно-методическое обеспечение.
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Программа разработана учителем математики Поляничко Л.Г. учителем математики МОУ СОШ №18 поселка Паркового Тихорецкого района Краснодарского края.
Предлагаемый курс «Математика в быту и профессии» позволяет применять математические знания, полученные в курсе основной школы, для решения бытовых, экономических задач и статистических задач. Умения составлять математические модели той или иной реальной ситуации позволит учащимся решать возникшие перед ними задачи, В простейших случаях условия задачи сразу переводится на математический язык и мы получаем математическую модель, Математическая модель только тогда имеет практическое значение, когда она достаточно хорошо отображает основные свойства и определённые характеристики исследуемого реального явления. В предлагаемом курсе учащиеся познакомятся с методом построения математических моделей задач различного характера, применяя известные формулы.