Урок алгебры в 9-м классе. Тема « Степенная функция. Чётные и нечётные функции».

Цель: - формирование знаний и умений в соответствии с требованиями математической подготовки - контроль качества усвоения материала. Задачи: 1. повторить определение чётных и нечётных функций, 2. повторить свойства и график степенной функции, 3. проверить уровень усвоения материала, умения определять чётность и нечётность функций по графику и аналитически.

Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Урок разработан для учащихся 11 класса. Перед началом урока учащиеся рассаживаются по группам в соответствии с двумя уровнями подготовки. Обобщить теоретические знания по темам «Геометрический и физический смысл производной», «Применение производной при исследовании функций». Рассмотреть примеры базового и повышенного уровня сложности по данным темам. Организовать работу учащихся в ходе урока на уровне, соответствующем уровню уже сформированных знаний. Научить правильно решать задания ЕГЭ по разделу «Производная»;

Применение парацентрической технологии при обучении математике позволяет реально осуществить процесс индивидуализации, предоставляет право выбора метода и способа обучения благодаря организации различных видов диалогового учения. В каждом диалоговом общении ученик затрачивает нужное ему время на выполнение того или иного задания, выбирает подходящие для стиля мышления СО, доступное для него методическое указание, проявляя свои интеллектуальные возможности и способности на уроках математики.

Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее