Разработка урока алгебры для 9 класса по теме "Решение систем линейных уравнений методом Гаусса"

Цели урока: 1. Формирование и закрепление у учащихся навыков решения систем линейных уравнений методом Гаусса. Задачи урока: 1. Сформировать навыки и умения решения систем линейных уравнений, используя метод Гаусса. 2. Прививать интерес к предмету через привлечение различных источников информации; расширять кругозор учащихся; способствовать формированию исследовательских и коммуникативных компетенций, навыков само- и взаимопроверки. 3. Развивать логическое мышление, способность к абстрагированию, анализу. 4. Воспитывать самостоятельность и активность учащихся.

Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы

I. Цель урока: Выработка навыка решения задач с параметрами различными способами. Развитее творческих способностей, математической культуры. С параметрами учащиеся встречаются в школьном курсе алгебры: 1. Прямая пропорциональность: y=kx (x и y – переменные; k – параметр; k≠o) 2. Линейная функция: y=kx+b (x и y – переменные; k и b – параметры) 3. Линейное уравнение: ax+b=0 (x – переменная; a и b – параметры) 4. Квадратное уравнение: ax² +bx+c=0 (x – переменная; a,b,c – параметры; a≠0) II.Ход урока: Чтобы обеспечить хорошее понимание темы целесообразно решить примеры с числовыми коэффициентами Дается определение: параметрами называются числа, обозначенные буквами, значения которых предполагаются известными. Учащиеся должны уяснить, что исследование решения уравнения, содержащего параметры, является обязательной составной частью решения этого уравнения.

Урок помогает обобщить знания учащихся по теме, отработать свойства степеней, организовать взаимопомощь при совместной работе.

Использование нетрадиционных форм урока целесообразно тогда, когда есть опасность неприятия учащимися какого-либо учебного задания; при прохождении сложных тем или при постановке дидактических задач урока; при выработке умений и навыков учащихся, когда требуется выполнить значительное количество однотипных упражнений; при изучении материала, подлежащего прочному запоминанию.
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее