Цель урока: выработать умение строить графики функции у = ах^2+n и у = а(х-m)^2 и у = ах^2+bх+с с помощью параллельных переносов вдоль осей координат.
Возрастающая потребность связи математики и различных жизненных ситуаций побуждает учителя применять такие формы проведения уроков, которые бы могли активизировать сознательную деятельность учащихся. Одной из таких форм является урок на основе проблемно – исследовательской технологии, когда ученик сталкивается с проблемой, для решения которой имеющихся знаний недостаточно, следовательно, эти знания нужно «добыть». Учащиеся сами формулируют проблемы, выдвигают гипотезы, находят способы решений. Учитель направляет учащихся, создает ситуации успеха. Изучение квадратичной функции начинается с рассмотрения функции у = ах2, её свойств и особенностей графика, а уже затем рассматриваются частные виды у = ах2+n и у = а(х-m)2. Важно, чтобы учащиеся поняли, что график функции у = ах2+bх+с может быть получен из графика функции у = ах2 с помощью соответствующих преобразований относительно осей координат.
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Урок алгебры в 7 классе по теме "Свойства степени с натуральным показателем". В представленный материал входит конспект урока, презентация. Учитель математики: Кулясова Т.В., Самара
Материал содержит конспект урока, включающий повторение теоретического материала, разбор простейших дробно-рациональных уравнений с параметром, более сложных задач, задания для самостоятельного решения.