Урок в 11 классе по теме "Производные тригонометрических функций"

03 февраля 2011
Производные тригонометрических функций в математике имеют особую важность, в результате их анализа учащиеся подходят к понятию дифференциального уравнения гармонических колебаний – одного из инструментов описания и исследования процессов действительности.
Производные тригонометрических функций.docx
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Данные разработки уроков по алгебре предназначены для учителей работающих в 8-ом классе, с использованием смарт-доски, промежуточным тестированием в программе "краб-2".
Тема 3.8 «Решение систем иррациональных уравнений» Вид занятия: комбинированный урок. Методы обучения: объяснительно-иллюстративный с использованием информационных технологий (ЭОР, мультимедийная презентация), репродуктивный. Уровень усвоения информации: первый (узнавание ранее изученных объектов, свойств) + второй (выполнение деятельности по образцу, инструкции или под руководством) Образовательные цели: рассмотреть понятие системы иррационального уравнения, алгоритм решения системы иррациональных уравнений. Формировать умение решать простейшие системы иррациональных уравнений, проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени и радикалы. Воспитательные цели: создавать условия для развития самостоятельности в добывании студентами знаний, скорости восприятия и переработки информации, культуры речи, воспитании настойчивости в достижении цели; формировать умение работать в коллективе и команде. Развивающие цели: способствовать выработке навыков решения математических задач.
Варианты для тренировки к ЕГЭ 2022-2023
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее