Разработка урока "Решение логарифмических неравенств методом рационализации"

23 декабря 2010
Работа представляет интерес для учащихся 11 классов. Рассматривается метод решения логарифмических неравенств методом рационализации, который существенно упрощает неравенства с логарифмами, у которых под знаком логарифма и в основании логарифма стоит функция
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы

I. Цель урока: Выработка навыка решения задач с параметрами различными способами. Развитее творческих способностей, математической культуры. С параметрами учащиеся встречаются в школьном курсе алгебры: 1. Прямая пропорциональность: y=kx (x и y – переменные; k – параметр; k≠o) 2. Линейная функция: y=kx+b (x и y – переменные; k и b – параметры) 3. Линейное уравнение: ax+b=0 (x – переменная; a и b – параметры) 4. Квадратное уравнение: ax² +bx+c=0 (x – переменная; a,b,c – параметры; a≠0) II.Ход урока: Чтобы обеспечить хорошее понимание темы целесообразно решить примеры с числовыми коэффициентами Дается определение: параметрами называются числа, обозначенные буквами, значения которых предполагаются известными. Учащиеся должны уяснить, что исследование решения уравнения, содержащего параметры, является обязательной составной частью решения этого уравнения.

Конспект урока в 11 классе на повторение решений логарифмических уравнений

Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее