Данный ресурс разработан для сопровождения урока по теме "Числовая последовательность" в 9 классе (УМК Ш. А. Алимова) и должен помочь раскрыть учащимся понятия числовая последовательность, конечная и бесконечная числовая последовательность, задание числовой последовательности с помощью формулы n-го члена. В презентации подобраны задания и задачи для иллюстрации применения понятий и формул, дается пример применения рекуррентной формулы последовательности.
Числовая последовательность.rar
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Как встроить процесс формирования функциональной грамотности в урок? Из опыта работы по формированию читательской грамотности, математической, глобальным компетенциям, креативному мышлению на уроке математики.

Представлен конспект урока решение иррациональных уравнений методом замены переменных

Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее