Урок " Решение показательно-степенных уравнений " в 11 классе проводится после изучения тем " Решение степенных уравнений " и " Решение показательных уравнений " с целью систематизации знаний. Анализ письменных работ учащихся показывает, что при решении показательно-степенных уравнений не освещенность вопроса об отрицательном значении аргумента показательно-степенной функции в школьных учебниках, вызывает у них ряд трудностей и ведет к появлению ошибок. А также возникают проблемы на этапе систематизации полученных результатов, когда в силу перехода к уравнению – следствию или неравенству – следствию, могут появиться посторонние корни. С целью устранения ошибок была использована проверка по исходному уравнению и алгоритм решения показательно-степенных уравнений.
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Цель урока: выработать умение строить графики функции у = ах^2+n и у = а(х-m)^2 и у = ах^2+bх+с с помощью параллельных переносов вдоль осей координат. Возрастающая потребность связи математики и различных жизненных ситуаций побуждает учителя применять такие формы проведения уроков, которые бы могли активизировать сознательную деятельность учащихся. Одной из таких форм является урок на основе проблемно – исследовательской технологии, когда ученик сталкивается с проблемой, для решения которой имеющихся знаний недостаточно, следовательно, эти знания нужно «добыть». Учащиеся сами формулируют проблемы, выдвигают гипотезы, находят способы решений. Учитель направляет учащихся, создает ситуации успеха. Изучение квадратичной функции начинается с рассмотрения функции у = ах2, её свойств и особенностей графика, а уже затем рассматриваются частные виды у = ах2+n и у = а(х-m)2. Важно, чтобы учащиеся поняли, что график функции у = ах2+bх+с может быть получен из графика функции у = ах2 с помощью соответствующих преобразований относительно осей координат.

В зависимости от задачи (с переменной х и параметром а) рассматриваются графики или в координатной плоскости (х, у) или в координатной плоскости (х, а). На данном уроке рассматриваются задачи, где используется координатная плоскость (ХОУ). При построении графиков функций часто приходится использовать такие геометрические преобразования на плоскости, как параллельный перенос, поворот, гомотетию. На уроке - практикуме разбирается, каким видом преобразований можно воспользоваться при решении той или иной задачи. Все задачи С5 взяты из реальных КИМов по математике за 2011- 2013 год.

Разработка урока с использованием интерактивной презентации, созданной в среде Mimio Studio (для интерактивной доски).Обобщающий урок нацелен на закрепление знаний о линейной функции и ее свойствах, о графическом методе решения уравнений.

Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее