Урок разноуровневого обобщающего повторения на тему: "Решение логарифмических уравнений"

15 октября 2009
Урок разноуровневого обобщающего повторения на тему Решение логарифмических уравнений.zip
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Кузнецова Елена Борисовна.Урок с применением ИКТ "График функции" (Макарычев Ю.Н. 7 класс) (Вместе с конспектом урока прилагаются аннотация к работе, методическая часть и презентация к уроку)
Данный ресурс разработан для сопровождения урока по теме "Числовая последовательность" в 9 классе (УМК Ш. А. Алимова) и должен помочь раскрыть учащимся понятия числовая последовательность, конечная и бесконечная числовая последовательность, задание числовой последовательности с помощью формулы n-го члена. В презентации подобраны задания и задачи для иллюстрации применения понятий и формул, дается пример применения рекуррентной формулы последовательности.
Урок обобщения и систематизации знаний по теме "Решение показательных уравнений" в 10-11 классах, на котором повторяются методы решения показательных уравнений, рассматриваются решения таких уравнений разного уровня сложности. Выведен алгоритм решения показательных уравнений.
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее