Конспект урока Решение прикладных задач, включенных в ГИА в форме ОГЭ и ЕГЭ

Занятие по взаимодействию обучающихся 9 и 11 классов при решении задач прикладного содержания при подготовке к ГИА.
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы

УРОК-ПОВТОРЕНИЕ ПО ТЕМЕ «ОСНОВНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ТОЖДЕСТВА» Цель урока: - расширить представление учащихся о тригонометрических тождествах; - повысить уровень знаний по теме; - продолжить работу по формированию у учеников умений преобразовывать тригонометрические тождества; - продолжить работу по развитию речи, развивать логическое мышление, интерес к предмету. Оборудование: плакат «Объясни алгоритм решения задания», плакат «Реши задание и расшифруй фамилию великого математика», раздаточный материал (для каждого учащегося).

Применение парацентрической технологии при обучении математике позволяет реально осуществить процесс индивидуализации, предоставляет право выбора метода и способа обучения благодаря организации различных видов диалогового учения. В каждом диалоговом общении ученик затрачивает нужное ему время на выполнение того или иного задания, выбирает подходящие для стиля мышления СО, доступное для него методическое указание, проявляя свои интеллектуальные возможности и способности на уроках математики.

Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее