Методическая разработка урока «Определение геометрической прогрессии.

05 февраля 2016
Интегрирующие цели: • усвоить определение геометрической прогрессии и формулу n-го члена геометрической прогрессии; • научиться: — находить знаменатель геометрической прогрессии, если известны любые два последовательных ее члена; — применять формулу n-го члена для решения задач. Используются модульная технология, технология развития критического мышления, технология группового взаимодействия, НИТИ технология.
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы

урок для 7-х классов

Урок изучения нового материала.

Урок алгебры и начала анализа в 10 классе физико – математического профиля. Цель урока: обобщение и систематизация знаний по теме. Подготовка учащихся к ЕГЭ. В заданиях Единого государственного экзамена имеется довольно много уравнений, при решении которых необходимо выбрать такой способ решения, который позволяет решить уравнения проще, быстрее. На уроке учащиеся анализируют различные методы решения иррациональных уравнений. Этот материал можно использовать при обобщении темы "Решение иррациональных уравнений" в 10 классе, а также при повторении в 11 классе - обучение, закрепление и фактические проверки навыков в данной теме, чтобы в короткие сроки и в полном объеме повторить тему "Решение иррациональных уравнений". Это особенно ценно при подготовке к ЕГЭ.

Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее