Разработка урока по теме: «Числовая функция и её свойства», 9 класс

23 декабря 2014
Урок закрепления знаний. Подготовка обучающихся к сдаче экзамена в форме ГИА.
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Данный урок разработан в соответствии с ФГОС нового поколения. На этом уроке учащиеся рассматривают применение функций, строят графики и анализируют результаты.
Данная разработка включает в себя три начальных урока по каждому из параграфов главы «Геометрическая прогрессия». К каждому уроку прилагается сопровождающая презентация. Навигация по презентациям упрощена: является пошаговой, не содержит гиперссылок. Такая форма презентации удобна для любого технического оснащения и любой методической формы работы на уроке. Включение в уроки легенды и дополнительных текстовых задач призвано повысить интерес к изучению данной темы и научить ребят определять по смыслу условия текстовой задачи компоненты формул геометрической прогрессии. Представленные презентации могут использоваться для проведения уроков алгебры в 9 классе по любому УМК.
Интегрирующие цели: • усвоить определение геометрической прогрессии и формулу n-го члена геометрической прогрессии; • научиться: — находить знаменатель геометрической прогрессии, если известны любые два последовательных ее члена; — применять формулу n-го члена для решения задач. Используются модульная технология, технология развития критического мышления, технология группового взаимодействия, НИТИ технология.
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее