ПЛАН-КОНСПЕКТ УРОКА по теме: «Решение простейших тригонометрических уравнений»

Урок с ЭОР: показать методы решения тригонометрических уравнений с использованием формул сложения , введением вспомогательного угла, графическим методом; продолжить формирование навыков чтения графиков тригонометрических функци
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
1-й урок по теме «Сумма n первых членов геометрической прогрессии» и 4-й урок по разделу «Геометрическая прогрессия». Содержание урока построено в соответствии с требованиям Программы среднего общего образования по алгебре. Тип урока - изучение нового материала, структура урока определена в соответствии с технологией критического мышления - вызов, осмысление, рефлексия.
Данный урок является итоговым после изучения темы "Функции и графики. Квадратичная функция". Рассчитан на 2 часа и проводится в форме игры - соревнования, где используются разные формы представления знаний учащихся.
Цель урока: Вспомнить формулы сокращенного умножения. Повторить способы разложения многочленов на множители. Разобрать новые приёмы разложения. Научиться применять их к решению комбинированных примеров. Углубить знания, развивая логическое мышление.
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее