Использование графиков равномерного движения при решении текстовых задач

24 декабря 2010
Ни одна математическая задача не решается по шаблону, каждая содержит свою изюминку и в этом её прелесть. Но для того, чтобы научиться решать задачи нужно знать теоретический материал: теоремы, аксиомы, леммы, свойства, уметь применять их при решении задач и уметь логически рассуждать. Очень часто учащиеся школ говорят о сложности задач на движение. Но это не совсем так. Просто такие задачи решаются тогда, когда ученики еще не очень хорошо работают с графиками.
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Актуальность выбранной темы - увидеть за словом число, за сюжетом - формулу и доказать, что литература существует не только для литераторов, как и математика не только для математиков

В работе раскрыт загадочный мир многогранников, а именно рассмотрены такие правильные многогранники, как икосаэдр и октаэдр, выявлена их связь с природой. Выполнены модели некоторых звездчатых форм икосаэдра и октаэдра.

Задачи проекта: -Изучить историю изучения «золотого сечения», раскрыть суть понятия. -Рассмотреть «золотого сечения» с точки зрения математики -Изучить правила «золотого сечения» в искусстве. Цель проекта: -Создать собственный плакат на основании полученных знаний о «Божественной пропорции». Проблема: Использование правил золотого сечения в современном графическом дизайне для фокусировки внимания на определенном объекте.
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее