Электронное пособие по теме "Тригонометрические функции"

21 ноября 2009
В пособии рассмотрены основные свойства тригонометрической функции с помощью графика соответствующей функции. Раскрыты этапы построения графика тригонометрической функции. Данная разработка будет полезна как преподавателям при изучении темы (наглядность) и проведении первичного контроля, так и учащимся для самостоятельного изучения материала и проверки своих знаний.
Тригонометрические функции.zip
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы

Малоизвестным фактом для многих учеников является то, что французский император Наполеон Бонапарт был любителем математики и внес определенный вклад в ее развитие. В данной работе ученик 7 класса рассматривает теоремы Наполеона, Тебо и др.

Ни одна математическая задача не решается по шаблону, каждая содержит свою изюминку и в этом её прелесть. Но для того, чтобы научиться решать задачи нужно знать теоретический материал: теоремы, аксиомы, леммы, свойства, уметь применять их при решении задач и уметь логически рассуждать. Очень часто учащиеся школ говорят о сложности задач на движение. Но это не совсем так. Просто такие задачи решаются тогда, когда ученики еще не очень хорошо работают с графиками.

Проект предлагается учащимся 8-го класса по теме «Площади» (Теорема Пифагора). Проект соответствует требованиям к уровню подготовки учащихся средней (основной) школы. Проект направлен на изучение биографии древнегреческого философа Пифагора, на рассмотрение различных способов доказательства теоремы Пифагора, на решение задач (древних и современных) с ис-пользованием теоремы Пифагора. Учащимся необходимо найти ответ на вопрос «Зачем нужна теорема Пифагора?» и найти практическое применение этой теоремы. В ходе реализации проекта учащиеся знакомятся не только с основным материалом учебной темы, но и получают дополни-тельные знания по истории математики. Работа над проектом предполагает формирование комму-никативной компетентности, представление результатов в форме презентации позволяет развить навыки работы с информационно-коммуникационными технологиями. Для выполнения проекта учащиеся разбиваются на три группы: теоретики, практики, исследователи. Результаты проекта оформляются в виде презентаций, публикаций, статей Wiki. Участники различных групп обсуждают работы в блоке и высказывают мнение о проекте через опрос. Продолжительность проекта - 1 месяц. Итоговое завершение проекта – проведение открытой защиты проекта «Пифагорийцы, вперед!», создание буклета на память «Я осваиваю теорему Пифагора».

Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее