Проект.Личностно – деятельностный подход как один из компонентов профильной подготовки по математике

03 февраля 2020
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы

Раздел « Тригонометрические уравнения» курса математики наиболее сложный для учащихся. Одной из причин этого является недостаточное количество программных часов, отведенное на изучение этого раздела, а также поверхностное изложение некоторых важных вопросов, связанных с решением тригонометрических уравнений, отбором и исследованием корней. Целью элективного курса является: коррекция базовых математических знаний, систематизация, расширение и углубление знаний в вопросах решения тригонометрических уравнений; развитие познавательных интересов и творческих способностей учащихся. Дает возможность познакомиться с интересными, нестандартными вопросами тригонометрии, с методами решения тригонометрических уравнений, подготовиться к различного рода экзаменам, в частности к ЕГЭ. Поэтому данный элективный курс будет способствовать совершенствованию и развитию важнейших математических знаний и умений, предусмотренных школьной программой, поможет оценить свои возможности по математике.

Геометрический метод состоит в том, что само доказательство или решение задачи направляется наглядным представлением. (В старинных индийских сочинениях бывало так, что доказательство сводилось к чертежу, подписанному одним словом «Смотри!».) Цель: показать, что преимущество геометрического решения алгебраических задач в его наглядности, так как геометрический подход допускает изящное решение;
Исследовательскую работу выполнил ученик 4 класса. Направление- естественно-математическое. Содержание: • Введение • Основная часть: 1) Немного истории; 2) Создание модели физической задачи; 3) Проведение лабораторного опыта; 4) Выводы; • Заключение • Список используемых источников • Приложения
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее