Работа на школьную научно-практическую конференцию по теме "координатная плоскость". Содержит краеведческий материал
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Работа содержит исследование системы сложных заданий по теме «Решение квадратных уравнений и неравенств с параметрами», в основу, которой положена классификация уровней развития усвоения деятельности по В. П. Беспалько. В данной работе эффективным является распределение задач по уровням развития деятельности, что позволило создать систему заданий для диагностики результативности усвоения темы: «Решение квадратных уравнений и неравенств с параметрами», применение которой при подготовке к экзамену приводит к положительному результату и помогает преодолению психологического барьера при решении задач из второй части. Из данной системы заданий легко подготовить индивидуальные карточки для самостоятельной работы из задач трех групп Работа будет интересна учащимся 8 – 9 классов и учителям математики.Учителя математики могут использовать её, как методическое пособие при подготовке к итоговой аттестации, а также для контроля знаний учащихся.
Введение В наше время актуально изучение различных свойств и нестандартных применений необычных фигур. Слышали ли вы когда – нибудь о листе Мёбиуса? Как его можно изготовить, как он связан с математикой и где применяется в жизни? В первый раз я узнал о нём на занятиях кружка по информатике. Занимаясь этой работой, я пришёл к выводу, что хотя лист Мёбиуса открыли ещё в XΙX веке, он был актуален и в XX веке, и в XXΙ. Удивительные свойства листа Мёбиуса использовались и используются, в технике, в физике, в живописи, в архитектуре, в кулинарии в оформлении ювелирных изделий и бижутерии. Вдохновлял он на творчество многих писателей и художников. Интерес к листу Мёбиуса не угас и в наши дни. В Москве, в сентябре 2006 года состоялся Фестиваль художественной математики. С большим успехом было принято выступление профессора из города Токио. Меня очень заинтересовала, заинтриговала эта тема. Я изучила литературу, затем сама изготовила лист Мебиуса, а потом проводила исследования, ставя опыты, изучая его волшебные, необыкновенные свойства. Лента Мёбиуса – бумажная лента, повёрнутая одним концом на пол- оборота (то есть 180 градусов) и склеенная с его другим концом. Миллионы людей во всех частях света даже не подозревают, что они каждый день используют ленту Мёбиуса. Цель: рассказать и показать людям, что на вид простая лента, повёрнутая на полоборота со склеенными концами, может заключать в себе много неожиданностей. Задачи: 1. выявить источники и литературу по данной теме и проанализировать их; 2. познакомиться с историей возникновения листа Мёбиуса; 3. научиться и научить других изготавливать лист Мёбиуса; 4. изучить разнообразные свойства листа Мёбиуса; 5. найти, где используются его свойства; 6. создать слайд - фильм по данной теме. Исходя из выше сказанного, мы определили объект нашего исследования-односторонние поверхности. При этом предметом исследования является обучение умению изготавливать лист Мёбиуса, проверять его свойства, находить применение в жизни. Это ведёт к более глубокому осмыслению математики как прикладной науки. Работая над темой, я использовал следующие методы: анализ, синтез, наблюдение, эксперимент, сравнение и социологический опрос. Работа состоит из введения, шести пунктов, заключения, списка используемых источников и литературы.
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее