Содержание курса соответствует целям предпрофильного обучения, который направлен на достижение нового качества обучения математике с учетом современных требований в условиях организации предпрофильной подготовки и введение профильного обучения, на предварительное самоопределение учащихся в отношении собственного профильного направления в образовании.
• Дает обучающимся возможность реализовать свой интерес к выбранному предмету;
• Помогает уточнить готовность и способность обучающихся осваивать выбранный предмет на повышенном уровне;
• Создает условия для подготовки к экзаменам по выбору (будущее профилирующие);
• Создает условия для осознанного и успешного выбора профиля выпускником основной школы.
Содержание учебного материала включает темы, полезные для дальнейшего выбора профиля обучения.
• Программа содержит все знания, необходимые для достижения запланированных целей.
• включены прогрессивные научные знания и наиболее ценный опыт практической деятельности человека.
• применима для различных групп (категорий) школьников, что достигается обобщённостью включённых в неё знаний, их отбором в соответствии с общими для всех учащихся задачами предпрофильного обучения, модульным принципом построения программы. Доля необобщённых знаний: частного опыта, фактов, информации сведена в программе к минимуму.
• Содержание направлено на передачу знаний, необходимых для формирования компетенции в предметной области, а также зрелости в выборе профиля обучения.
• Предполагается применение активных методов обучения, использование ИКТ.
• Изучение всех последующих знаний обеспечивается предыдущими, наличие связей между частными и общими знаниями.
• Способ развёртывания содержания избирается в зависимости от стоящих в программе целей (формирования теоретического или эмпирического мышления).
• Обеспечивается степенью операциональности описания тех знаний, которые предполагается сформировать, а также выделением результатов подготовки по каждой из ведущих тем или по программе в целом.
• Возможность в любой момент обучения установить степень достижения промежуточных и итоговых результатов обучения и выявить сбой в прохождении программы.
• Делается крен в сторону "абитуриентской" математики. Этому способствует набор тем, рассматриваемых в процессе изучения курса.
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Презентация к зональному семинару «Инновационные подходы к оценке уровня математической подготовки выпускников. Технологии подготовки к ЕГЭ» на тему: «Перспективная подготовка учащихся 10 класса к ЕГЭ по математике»
Данный проект готовился учениками 5 класса. Урок проводиться на последнем уроке 2 четверти. На уроке решаются разнообразные занимательные задания, развивается кругозор учащихся.
Данный курс был утвержден АППО Санкт-Петербурга. Предлагаемый элективный курс предназначен для реализации в 9 классах общеобразовательных школ. В этом курсе математика подаётся как элемент общей культуры человечества. Курс рассчитан на базовый уровень.
Цель курса состоит в формировании представления о математике как теоретической базе создания произведений архитектурного искусства.
Конкретные задачи курса состоят в следующем:
Расширить представления учащихся о сферах применения математики (не только в естественных науках, но и в такой области гуманитарной сферы деятельности, как искусство);
Убедить в практической необходимости владения способами выполнения математических действий (на примере отдельных компонентов процесса проектирования сооружений);
Расширить сферу математических знаний учащихся (пространственные фигуры, виды симметрии);
Расширить общекультурный кругозор учащихся посредством знакомства их с лучшими образцами произведений архитектуры;