Каждому человеку в своей жизни приходится выполнять математические расчеты, пользоваться вычислительной техникой, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм, графиков, составлять несложные алгоритмы и др.
Обучение решению задач на уроках математики предоставляет возможность для формирования у обучающихся определенного склада ума, дает опыт решения любых практических задач, вырабатывает привычку к систематической и методичной работе. Все это способствует формированию у учеников математической грамотности. Формирование математической грамотности предполагает обязательное применение математических знаний в практической деятельности.
Требование ФГОС: подготовить выпускника, обладающего необходимым набором современных знаний, умений и качеств, позволяющих ему уверенно чувствовать себя в самостоятельной жизни, умеющего применять знания в реальных ситуациях.
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Введение профильного обучения предполагает более углубленное изучение тех предметов, которые в будущем для выпускников будут играть важную роль как для поступления в вуз, так и для осознанного получения той или иной профессии.
Волкова Зинаида Михайловна
Существует огромное количество конкурсных задач по планиметрии на различные комбинации фигур. Для решения задач С4 необходимо научиться искать стороны, отрезки, углы и площади геометрических фигур до автоматизма. Каждая новая комбинация фигур и данных в условии приносит свои подходы к решению, до которого бывает сложно догадаться. Даже если помнить все теоремы наизусть. Приходится набивать руку на решении большого количества задач. Необходимо научиться умению видеть применимость теорем для каждой конкретной задачи.
Как правило, ученики помнят теорему, но часто не могут выявить ее в конкретной ситуации. В заданиях С4 предлагаются рисунки с типичными ситуациями расположения объектов: различных сочетаний треугольников, четырехугольников, окружностей.