Существует огромное количество конкурсных задач по планиметрии на различные комбинации фигур. Для решения задач С4 необходимо научиться искать стороны, отрезки, углы и площади геометрических фигур до автоматизма. Каждая новая комбинация фигур и данных в условии приносит свои подходы к решению, до которого бывает сложно догадаться. Даже если помнить все теоремы наизусть. Приходится набивать руку на решении большого количества задач. Необходимо научиться умению видеть применимость теорем для каждой конкретной задачи.
Как правило, ученики помнят теорему, но часто не могут выявить ее в конкретной ситуации. В заданиях С4 предлагаются рисунки с типичными ситуациями расположения объектов: различных сочетаний треугольников, четырехугольников, окружностей.
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Рекомендации из опыта работы по проведению уроков в личностно ориентированном обучении. Технологические карты уроков в личностно ориентированном обучении: математика 5 класс "Десятичная запись дробных чисел", алгебра 7 класс "Умножение одночлена на многочлен", алгебра 8 класс "Нахождение значений выражений, содержащих квадратный корень".
Доклад на тему: "Поддержка самоопределения, саморазвития и самореализации школьников при обучении математике."
Одно из ведущих качеств личности - самостоятельность. Оно выражается в умении ставить перед собой определённые цели и добиваться их достижения собственными силами.
Как сделать так, чтобы школа стала желанной средой саморазвития и самореализации?