Методологические основы построения содержания школьного курса математики. Возможности содержания темы школьного курса математики в реализации Программы развития УУД в ООО
Методологические основы построения содержания школьного курса
математики. Возможности содержания темы школьного курса
математики в реализации Программы развития УУД в ООО
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Технология заданного подхода – представление элементов содержания образования в виде разноуровневых, личностно-ориентированных задач для создания условий индивидуальности обучения
В своей работе даю анализ структур математического мышления,технологии работы в разноуровневых группах.С учетом особенностей мышления показываю, как можно построить процесс обучения школьников.Успех в обучении во многом зависит от грамотной постановки целей. Планирование целей обучения для каждой группы можно осуществлять в виде технологической карты, в которой выделены с одной стороны, укрепленные единицы усвоения, а с другой способы действия, умения. Привожу технологические карты по двум темам 8 класса: «Квадратные уравнения» и «Теорема Пифагора».
Указываю основные компоненты системы обучения,которые должны быть направленные на психопрофилактику.
Считаю, разноуровневое обучение, учет индивидуально-психологических особенностей школьников, помогает выстроить индивидуальные траектории развития, обеспечивает обучение без перегрузок и школьных стрессов, тем самым помогает решать задачу сохранения и укрепления здоровья школьников, а так же их развитие.
Данный курс был утвержден АППО Санкт-Петербурга. Предлагаемый элективный курс предназначен для реализации в 9 классах общеобразовательных школ. В этом курсе математика подаётся как элемент общей культуры человечества. Курс рассчитан на базовый уровень.
Цель курса состоит в формировании представления о математике как теоретической базе создания произведений архитектурного искусства.
Конкретные задачи курса состоят в следующем:
Расширить представления учащихся о сферах применения математики (не только в естественных науках, но и в такой области гуманитарной сферы деятельности, как искусство);
Убедить в практической необходимости владения способами выполнения математических действий (на примере отдельных компонентов процесса проектирования сооружений);
Расширить сферу математических знаний учащихся (пространственные фигуры, виды симметрии);
Расширить общекультурный кругозор учащихся посредством знакомства их с лучшими образцами произведений архитектуры;