Методологические основы построения содержания школьного курса математики. Возможности содержания темы школьного курса математики в реализации Программы развития УУД в ООО
Методологические основы построения содержания школьного курса
математики. Возможности содержания темы школьного курса
математики в реализации Программы развития УУД в ООО
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Эпиграфом для своего выступления, я выбрала высказывания французского писателя и философа Мишеля де Монтень«Знать что-либо наизусть – все равно, что не знать ничего; это значит владеть тем, что дано лишь на хранение памяти.»
М.Монтень
Основа ФГОС нового поколения – формирование базовых компетентностей современного человека: информационной, коммуникативной. Именно проблемно – диалогическая технология отвечает этим требованиям. Так как проблемное обучение постоянно ставит обучаемого в ситуацию задачи, решение которой непременно требует работы мышления.
Сущность проблемного обучения сводится к тому, что в процессе обучения в корне изменяется характер и структура познавательной деятельности учащегося, приводящее к развитию творческого потенциала личности учащегося. Главным и характерным признаком проблемного обучения является проблемная ситуация.
Существует огромное количество конкурсных задач по планиметрии на различные комбинации фигур. Для решения задач С4 необходимо научиться искать стороны, отрезки, углы и площади геометрических фигур до автоматизма. Каждая новая комбинация фигур и данных в условии приносит свои подходы к решению, до которого бывает сложно догадаться. Даже если помнить все теоремы наизусть. Приходится набивать руку на решении большого количества задач. Необходимо научиться умению видеть применимость теорем для каждой конкретной задачи.
Как правило, ученики помнят теорему, но часто не могут выявить ее в конкретной ситуации. В заданиях С4 предлагаются рисунки с типичными ситуациями расположения объектов: различных сочетаний треугольников, четырехугольников, окружностей.