методические рекомендации
Автор З.М. Волкова, учитель математики муниципального образовательного учреждения «Ясногорская средняя общеобразовательная школа
Кемеровского района Кемеровской области»,
отличник народного просвещения
Методические рекомендации предназначены для учителей математики, которые могут быть применены на уроках и групповых занятиях. В рекомендациях приведены примеры физических задач и математические способы их решения.
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Технология заданного подхода – представление элементов содержания образования в виде разноуровневых, личностно-ориентированных задач для создания условий индивидуальности обучения
В своей работе даю анализ структур математического мышления,технологии работы в разноуровневых группах.С учетом особенностей мышления показываю, как можно построить процесс обучения школьников.Успех в обучении во многом зависит от грамотной постановки целей. Планирование целей обучения для каждой группы можно осуществлять в виде технологической карты, в которой выделены с одной стороны, укрепленные единицы усвоения, а с другой способы действия, умения. Привожу технологические карты по двум темам 8 класса: «Квадратные уравнения» и «Теорема Пифагора».
Указываю основные компоненты системы обучения,которые должны быть направленные на психопрофилактику.
Считаю, разноуровневое обучение, учет индивидуально-психологических особенностей школьников, помогает выстроить индивидуальные траектории развития, обеспечивает обучение без перегрузок и школьных стрессов, тем самым помогает решать задачу сохранения и укрепления здоровья школьников, а так же их развитие.