В школьном курсе математики изучаются признаки делимости натуральных чисел на 2, 3, 5, 9, 10. Но данных признаков недостаточно для решения многих олимпиадных задач. Решая олимпиадные задачи, понятно, что есть ещё много неизвестных нам признаков делимости натуральных чисел. Именно поэтому предлагаю свой курс «Признаки делимости».
курс ПРИЗНАКИ ДЕЛИМОСТИ.docx
курс ПРИЗНАКИ ДЕЛИМОСТИ.pptx
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
На занятии рассматривается тема «Построение графика квадратичной функции, содержащей модуль».

Материал включает презентацию и описание игры. Посвящена игра С.В. Ковалевской – великой личности - математику. Проводится для учащихся 9- 11 классов.

В условиях профильной и уровневой дифференциации возникает проблема наполнения образовательной области. С нетрадиционной точки зрения наполнение должно быть более богатым, дающим возможность учащимся выбрать курс по интересам, по склонностям, по желанию. Тогда, одним из наполнителей может стать курс «Логика». Этим спецкурсом закрывается брешь в математическом образовании, связанную в отсутствии стохастической (разбитие комбинаторно) линии. При отборе содержания программы исходила из того, что соотношение между формальной и математической логиками в конкретных условиях школы будет наиболее оптимально. Основные цели и задачи:  Сформировать у школьников точное представление о формах и законах логики мышления;  Помочь учащимся овладеть логическими основами доказательных рассуждений, приемами проведения правдоподобных рассуждений, приемами постановки гипотез и их верификации (подтверждении). Форма проведения занятий: мини-лекции, уроки-практикумы, тренинги.
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее