Конспект обобщающего урока геометрии в 8 классе по теме Площади фигур

Разработка урока с презентацией
konspekt-obobschayuschego-uroka-geometrii-v-8-klasse-po-teme.docx
prezentatsiya-obobschayuschego-uroka-geometrii-v-8-klasse-po-teme.pptx
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Разработка урока и презентация для учителей и учеников 11 класса. Много интересного материала, которого нет в учебнике

Уже вторую четверть обучающиеся 9-х и 11-х классов на уроках геометрии изучают одну тему. И мы решили воспользоваться представившейся возможностью показать, что изучение математики в школе основано наряду с другими принципами (научность, доступность, наглядность и т.д.) на принципе концентризма. Если изобразить уровень знаний обучающихся 9-х классов окружностью, то концентрическая окружность большего радиуса будет изображать уровень 11-классников. Но, учитывая, что процесс обучения непрерывный, нагляднее было бы процесс познания изобразить в виде спирали. Так как мы возвращаемся часто к тем же вопроса, что изучали раньше, но на более высоком уровне.

Задачи на построение сечений в многогранниках занимают заметное место в курсе стереометрии. Их роль обусловлена тем, что решение этого вида задач способствует усвоению аксиом стереометрии, следствий из них, развитию пространственных представлений и конструктивных навыков. Умение решать задачи на построение сечений является основой изучения почти всех тем курса стереометрии. При решении многих стереометрических задач используют сечения многогранников плоскостью.
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее