Конспект урока по геометрии в 8 классе Тема урока: «Теорема Пифагора»

06 января 2011
Цели урока: Образовательные: 1. обобщение и закрепление знаний и умений по темам: «Прямоугольный треугольник. Косинус острого угла в прямоугольном треугольнике»; 2. установить связь теории и практики через специальный подбор задач; 3. изучить теорему Пифагора и уметь применять её в решении задач. Развивающие: 1. развитие и совершенствование навыков самостоятельной поисковой деятельности; 2. способствовать развитию математического кругозора, мышления и речи, внимания и памяти. Воспитательные 1. содействовать воспитанию интереса к математике, активности, мобильности, умения общаться. Тип урока: комбинированный.
Урок по геометрии 8 класс.doc
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Презентация к уроку, описаны свойства равнобедренных треугольников и более 20 задач к уроку с чертежами
Открытый урок по теме: "Угол между прямой и плоскостью" с цветными иллюстрациями.
Правильные геометрические тела — многогранники — имели особое очарование для Эшера. Существует лишь пять правильных многогранников, то есть таких тел, все грани которых состоят из одинаковых правильных многоугольников. Они еще называются телами Платона. Это — тетраэдр, гранями которого являются четыре правильных треугольника, куб с шестью квадратными гранями, октаэдр, имеющий восемь треугольных граней, додекаэдр, гранями которого являются двенадцать правильных пятиугольников, и икосаэдр с двадцатью треугольными гранями. Четыре правильных многоугольника На гравюре «Четыре правильных многоугольника» Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее