"Звёздчатые многогранники" (НПО 2 курс, тип А образовательной программы)

Чепуштанова В.А. Для разработки данного урока были использованы элементы адаптивной системы обучения, которая предусматривает разные формы групповой работы.Использование КТ дает возможность повысить успешность при объяснении нового материала, эффективность обучения, рационально использовать рабочее время. Кроме того, учащиеся привлекаются в качестве соавторов к созданию электронных пособий по различным темам курса математики.
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Урок открытия нового знания. Учащиеся работают с текстом учебника: учатся ставить цель чтения, находить требуемую информацию, анализировать рисунки, преобразовывать информацию. Формы работы: фронтальная, групповая.

Решение геометрических задач из ЕГЭ

Правильные геометрические тела — многогранники — имели особое очарование для Эшера. Существует лишь пять правильных многогранников, то есть таких тел, все грани которых состоят из одинаковых правильных многоугольников. Они еще называются телами Платона. Это — тетраэдр, гранями которого являются четыре правильных треугольника, куб с шестью квадратными гранями, октаэдр, имеющий восемь треугольных граней, додекаэдр, гранями которого являются двенадцать правильных пятиугольников, и икосаэдр с двадцатью треугольными гранями. Четыре правильных многоугольника На гравюре «Четыре правильных многоугольника» Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее