Правильные многогранники. Урок с презентацией и раздаточным материалом. Созинова Е. А. (Данный урок позволяет в наглядной форме познакомить учащихся с правильными многогранниками. К уроку прилагается презентация и раздаточный материал. На уроке используется занимателный материал.)
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Конспект урока по геометрии в 9 классе по технологии деятельностного метода. Используемые формы организации познавательной деятельности учащихся: фронтальная, индивидуальная, в парах. По учебнику: Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина . Геометрия 7- 9: учебник для общеобразовательных школ. – М: Просвещение, 2011.- 384 с.; эталоны решений заданий; Асмолов А.Г. «Программа развития универсальных учебных действий: структура, содержание, ожидаемые результаты».
Задание С4 предполагает умение выполнять действия с геометрическими фигурами, координатами и векторами.
Особенностью этих задач является рассмотрение различных конфигураций геометрических фигур. Чтобы решить их, надо хорошо знать планиметрию - со всеми описанными, вписанными и вневписанными окружностями, хордами, вообще все про окружности и пересекающие их прямые. Так как изучение планиметрии заканчивается в 9 классе, то необходимо систематически включать в работу на уроке в 10 – 11 классах решение сложных задач по планиметрии. Особенно акцентировать внимание учащихся на свойствах фигур, на опорных задачах и рассматривать различные способы расположения геометрических фигур на плоскости. Необходимо изучать свойства фигур, которые не входят в школьную программу, при решении даже стандартных задач рассматривать возможность другой конфигурации фигур.