Проект « Площади многоугольников» посвящён свойствам и площадям треугольника, квадрата, прямоугольника и трапеции. В проекте участвовало 4 рабочие группы:
- Исследователи свойств многоугольников
- Исследователи площадей многоугольников
- Историки
- Практики
Изучение площадей плоских фигур вызвало у учащихся большой интерес и побудило их к более глубокому изучению свойств треугольника, квадрата, прямоугольника и трапеции и их площадей, как с математической точки зрения, так и с других точек зрения ( исторической, географической, в повседневной жизни)
В ходе работы над проектом была создана презентация (слайды, рисунки) и буклет с формулами площадей многоугольников
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Презентация была подготовлена для выступления на межрайонной конференции «Шаг в науку» Презентация содержит богатый теоретический и практический материал. В ней много красочных слайдов. Она полезна учителям для использования на уроках и во внеклассной работе.
. В презентации отражены такие вопросы: когда и где появились треугольники, геометрические свойства треугольников: 1.Основные линии треугольника: медиана, биссектриса, высота, серединный перпендикуляр, средняя линия.
2.Свойства медиан треугольника.
3.Свойства биссектрис треугольника. 4.Свойства серединных перпендикуляров треугольника. 4.Свойство средней линии треугольника. 5.Признаки равенства треугольников. Треугольник – жесткая фигура. 6.Признаки равенства прямоугольных треугольников. 7.Подобие треугольников. Признаки подобия двух треугольников.
8.Определение тригонометрических функций острого угла в прямоугольном треугольнике и теорема Пифагора.
9.Формулы площади треугольника. 10.Теорема синусов и теорема косинусов.
А также существование треугольников в жизни и применение их в искусстве, архитектуре, окружающей жизни.
Проект разработан для 8 класса на базовом курсе « Геометрия 7-9 класс» по учебнику Л. С. Атанасяна, В. Ф. Бутузова и др., с использованием проблемного подхода на основе личностно - ориентированной технологии обучения. Обеспечивает формирование научного мировоззрения учащихся. Проект позволяет развивать внутреннюю мотивацию ( хочу знать, уметь); обеспечивает коллективно – распределительную деятельность( групповая, парная); позволяет каждому ученику проявить инициативу, самостоятельность, избирательность в способах работы; создаёт обстановку комфорта, самовыражения ученика через систематизацию и обобщение узловых вопросов темы. Проект ориентирован на получение глубоких и прочных знаний по изучаемой теме. Значимость темы «Вектор» заключается в необходимости применения вектора, и понятий с ним связанных, при решении и доказательстве задач. Данная тема имеет тесную связь применения вектора в школьном курсе физики.
ПРОЕКТ ВКЛЮЧАЕТ:
Тематическое планирование; перечень демонстрационного материала; теоретический и практический материал; средства реализации; планируемые результаты.
В данной работе представлена построенная учителем математики целостная модель учебного процесса в условиях проектно-исследовательской деятельности. Главной целью автора является раскрытие эффективности и широких возможностей использования этой методики на современном этапе развития образования.