Статья Епифановой Татьяны Николаевны учителя математики ГБОУ СОШ №1358 г. Москвы «Нестандартные формы проведения уроков с целью повышения познавательной активности учащихся».

В статье рассматривается применение эвристического метода обучения на примере изучения теоремы Пифагора. Разбираются два наглядных способа доказательства этой теоремы. Пробуждая творческую активность учащихся, учитель, умело задавая вопросы, подводит школьников к «открытию» теоремы Пифагора. Прививая детям интерес к отысканию различных способов доказательств утверждений, учитель тем самым развивает исследовательские способности учащихся.

Нестандартные формы проведения уроков с целью повышения познавательной активности учащихся.doc
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Раздел: Иное
Данная методическая разработка «Погружаемся в геометрию вместе.…От теоретического минимума к практике решения задач» предназначена для учителей математики всех типов школ, студентов Педагогических колледжей, РГПУ имени А.И.Герцена и будет полезна им при изучении и осмыслении подходов к практической реализации ФГОС второго поколения на уровне основного и среднего общего образования, в поиске путей повышения качества знаний. Актуальность данной разработки обусловлена потребностью учителей математики в поиске приемов, обеспечивающих понимание и применение теоретического материала при решении всех геометрических задач, особенно развивающих плоскостное и пространственное воображение ребенка. Эта потребность особенно возросла также в связи с заданиями по геометрии в ЕГЭ, введением геометрических заданий в Основной государственный экзамен по математике (ОГЭ), и обязательным решением как минимум трех таких заданий всеми выпускниками 9 класса. Новизна заключается в попытке описания опыта работы учителя по организации деятельностного подхода на уроках геометрии, раскрытия одного из возможных путей реализации требований ФГОС ООО на основе составления варианта 3-х часового Календарного тематического планирования по геометрии в 8 классе. Раскрываются приемы развития мыслительных операций и математической речи на уроках геометрии через работу по освоению теоретического минимума. Разработанная идея получила название «Работа над теоретическим минимумом», и в течение 4 лет, поэтапно, ежеурочно развивалась и внедрялась на уроках геометрии в 7-10 классах нашей школы. Опыт её осуществления в течение последних трех лет предъявлялся педагогическому сообществу учителей математики Адмиралтейского района Санкт-Петербурга.
Раздел: Иное
Практическая работа представляет собой набор слайдов с задачами на построение тел вращения по заданным фигурам вращения. Во второй части работы предложены несколько задач на вычисление площади поверхности и объёма тел вращения. Материал может быть предложен учащимся как индивидуальная самостоятельная работа или как фронтальный диктант.
Раздел: Иное
Данный проект направлен на закрепление и углубление знаний по геометрии, а также повышение интереса к изучаемому предмету на примере нестандартного подхода к решению задач. Рассчитан на учащихся 7 – 8 классов и предполагает изучение темы «Решение задач на построение».
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее