Методика решения задач планиметрии векторным методом

13 марта 2010
В этой работе предложена сводная таблица теоретического материала, необходимого при решении геометрических задач векторным методом, перечислены все виды задач, при решении которых целесообразно использование векторного метода, приведена классификация этих задач и приведен пример решения задачи с использованием векторного метода. Для каждого вида задач представлены эквивалентные утверждения на векторном языке.
Методика вектвекторного метода.doc
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Раздел: Иное
Ознакомление учащихся с формулой Пика особенно актуально накануне сдачи ЕГЭ и ГИА. С помощью этой формулы можно без проблем решать большой класс задач, предлагаемых на экзаменах, — это задачи на нахождение площади многоугольника, изображённого на клетчатой бумаге. Маленькая формула Пика заменит учащимся целый комплект формул, необходимых для решения таких задач. Формула Пика будет работать «одна за всех…»!
Раздел: Иное
Полноценная познавательная деятельность учащихся выступает главным условием развития у них инициативы, активной жизненной позиции, находчивости и умения самостоятельно пополнять свои знания, ориентироваться в стремительном потоке информации. Эти качества личности есть не что иное, как ключевые компетентности. Они формируются у учащегося только при условии систематического включения его в самостоятельную познавательную деятельность, которая в процессе выполнения им особого вида учебных заданий – проектных работ – приобретает характер проблемно-поисковой деятельности.
Раздел: Иное
Цель проекта: Реализация требований ФГОС ООО при изучении темы: «Площади». Для достижения поставленной цели необходимо решение следующих задач. Задачи исследования. 1. Выявить теоретические основы обучения теме, связанные с реализацией ФГОС ООО. 2. Выполнить отбор средств обучения теме, в том числе средства ИКТ 3. Разработать таблицу целей и карту обучения теме. 4.Составить учебную рабочую программу «Тематическое и почасовое планирование образовательных результатов освоения математики (в соответствии с темой). 5. Разработать методические рекомендации обучения теме и применить их в учебном процессе (фрагментов двух – трёх уроков, иллюстрирующих развитие и формирование УУД при обучении данной теме школьного курса математики). Решение поставленных задач потребовало использования следующих методов исследования: анализ психолого-педагогической, математической и методической литературы по проблеме исследования, учебников и учебных пособий по математике; беседы с учителями, тестирование учащихся, проведение опытной проверки. ГЛАВА 1. Теоретические основы обучения теме «Площади». § 1. Содержание ФГОС ООО в контексте школьного курса математики. "Все течет, все изменяется" — так говорил древнегреческий философ Гераклит. Его мысль актуальна в наши дни и применима ко всем сферам общественной жизни, и к человеку, как элементу общественной структуры тоже. Природа человека такова, что требует перемен, а надоевшие ему вещи становятся историей. Но иногда история возвращается в модернизированном виде. Образование является элементом духовной сферы. Его главная задача — воспитание гармонично развитой личности, способной принести пользу обществу. Духовно-нравственное развитие достигает содержательной полноты и становится актуальным для самого обучающегося, когда соединяется с жизнью, реальными социальными проблемами, которые необходимо решать на основе морального выбора. Условием реализации данной задачи является качественное образование. Многие годы образование являлось нетронутым со стороны государственных структур. Были незначительные перемены. Переход к новому Федеральному государственному образовательному стандарту (ФГОС), который предполагает качественно новую модель образования. У многих возникает вопрос: нужна ли такая кардинальная перестройка в образовании? Безусловно, введение ФГОС нового поколения актуально, необходимо. Социально-экономические, научно-технические, экологические и социаль-но-культурные изменения, происходящие в нашей стране, неизбежно влекут за собой радикальные изменения в образовании. Темпы обновления знаний настолько высоки, что на протяжении жизни человеку приходится неоднократно переучиваться, овладевать новыми профессиями. Непрерывное образование становится реальностью и необходимостью. Развитие СМИ и сети Интернет приводит к тому, что школа перестает быть единственным источником знаний и информации для школьника. В чем же теперь заключается роль школы? Одна из отличительных черт нового Федерального государственного стандарта – смена акцентов: вместо регламентации содержания, которое должно быть изложено учителем на уроках ученикам главным становятся те образовательные результаты, которых они должны достичь в результате своей учебной деятельности. Главной целью образования становится не передача знаний и социального опыта, а развитие личности ученика, его способности самостоятельно ставить учебные цели, проектировать пути их реализации, контролировать и оценивать свои достижения, иначе говоря – формирование умения учиться. В примерной программе по математике сохранена традиционная для рос-сийской школы ориентация на фундаментальный характер образования, на освоение школьниками основополагающих понятий и идей, таких, как число, буквенное исчисление, функция, геометрическая фигура, вероятность, дедукция, математическое моделирование. Эта программа включает материал, создающий основу математической грамотности, необходимой как тем, кто станет учеными, инженерами, изобретателями, экономистами и будет решать принципиальные задачи, связанные с математикой, так и тем, для кого математика не станет сферой непосредственной профессиональной деятельности. Вместе с тем подходы к формированию содержания школьного математического образования претерпели существенные изменения, отвечающие требованиям сегодняшнего дня. В Примерной программе основного общего образования по математике иначе сформулированы цели и требования к результатам обучения, что меняет акценты в преподавании; в нее включена характеристика учебной деятельности учащихся в процессе освоения содержания курса. Изучение предметной области "Математика и информатика" должно обеспечить: - осознание значения математики и информатики в повседневной жизни человека; - формирование представлений о социальных, культурных и исторических факторах становления математической науки; - понимание роли информационных процессов в современном мире; - формирование представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления. В результате изучения предметной области "Математика и информатика" обучающиеся развивают логическое и математическое мышление, получают представление о математических моделях; овладевают математическими рассуждениями; учатся применять математические знания при решении различных задач и оценивать полученные результаты; овладевают умениями решения учебных задач; развивают математическую интуицию; получают представление об основных информационных процессах в реальных ситуациях. Система математического образования в основной школе должна стать более динамичной за счет вариативной составляющей на всем протяжении второй ступени общего образования. В примерной программе по математике предусмотрено значительное увеличение активных форм работы, направленных на вовлечение учащихся в математическую деятельность, на обеспечение понимания ими математического материала и развития интеллекта, приобретение практических навыков, умений проводить рассуждения, доказательства. Наряду с этим в ней уделяется внимание использованию компьютеров и информационных технологий для усиления визуальной и экспериментальной составляющей обучения математике. ФГОС второго поколения призван обеспечивать развитие системы образования в условиях изменяющихся запросов личности и семьи, ожиданий общества и требований государства в сфере образования. Жизнь не стоит на месте. Меняются дети, меняется школа. Учитель в постоянном поиске: как научить ученика мыслить и действовать самостоятельно? Ведь в современном мире умение мыслить самостоятельно, опираясь на знания и опыт, ценится гораздо выше, чем просто эрудиция, владение большим объемом знаний без умения применять эти знания для решения жизненных проблем. Формировать у ребенка, пришедшего в школу, правильную гражданскую активную позицию, учить его искать, думать, творить, делать - именно на эти важные задачи и направлен новый ФГОС.
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее