Ознакомление учащихся с формулой Пика особенно актуально накануне сдачи ЕГЭ и ГИА.
С помощью этой формулы можно без проблем решать большой класс задач, предлагаемых на экзаменах, — это задачи на нахождение площади многоугольника, изображённого на клетчатой бумаге. Маленькая формула Пика заменит учащимся целый комплект формул, необходимых для решения таких задач. Формула Пика будет работать «одна за всех…»!
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Метод проектов всегда ориентирован на самостоятельную деятельность учащихся – индивидуальную, парную, групповую, которую учащиеся выполняют в течение определённого отрезка времени. Метод проектов всегда предполагает решение какой-то проблемы. Метод проектов как педагогическая технология предполагает совокупность исследовательских, поисковых, проблемных методов, творческих по своей сути.
Целью исследования учащихся 11 класса стал поиск точек соприкосновения геометрии и литературы на примерах творчества А.С. Пушкина и М.Ю. Лермонтова. Математика и искусство, что общего между ними? Можно ли выразить красоту с помощью формул и уравнений? Какие точки соприкосновения между ними можем мы найти? Самой яркой такой точкой является “золотое сечение”. Найдена связь математики с литературой через золотое сечение и числа Фибоначчи. Исследованы некоторые произведения А.С. Пушкина и М.Ю. Лермонтова с точки зрения математики. «Математический» метод даёт более обширное понимание произведений великих поэтов, открывает по-новому Пушкина и Лермонтова, выверивших «алгеброй гармонию».
Комментарии
No comments
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете: