Презентация к уроку геомитрии по теме "Пирамида"

Презентация может быть использована для сопровождения первых уроков изучения темы "Пирамида" с целью формирования таких понятий как пирамида, основание, боковые ребра, вершина, высота, апофема пирамиды.
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Раздел: Иное
Презентация к уроку геометрии в 8 классе по теме "Второй признак подобия треугольников".
Раздел: Иное
Мне очень хотелось показать ребятам при решении задач по геометрии №14, что в них общего и как лучше понять и решить эти задачи. Все задачи по определению углов в пространстве сводятся к задаче по определению углов на плоскости. Углы же на плоскости, как правило, определяются из треугольников. Для вычисления уголов в треугольнике используют теорему косинусов (если известны все три стороны), теорему синусов (если известны угол и две стороны). В прямоугольном треугольнике углы определяются через отношения сторон.
Раздел: Иное

По данным статистической обработки результатов ЕГЭ планиметрические задачи вызывают трудности не только у слабых, но и у более подготовленных учащихся. Как правило, это задачи, при решении которых нужно применить число геометрических фактов из школьного курса в измененной ситуации, а вычисления не содержат длинных выкладок. Решая такую задачу, ученик должен в первую очередь проанализировать предложенную в задаче конфигурацию и увидеть те свойства, которые необходимы при решении. Выходом из этой ситуации является создание системы многоуровневых задач по основным разделам курса планиметрии. Повторение и обобщение знаний учащихся начинается с повторения теоретического материала. Затем учащимся предлагается решение задач базового уровня (З.З.). После отработки таких заданий, учащиеся самостоятельно или в группах отрабатывают навыки решения модифицированных задач (М.З.). Совместно с учителем рассматриваются способы решения планиметрических задач (Н.Н.) из открытого банка заданий ЕГЭ ( задание С 4). Как правило, эти задачи - многовариантные задачи по планиметрии. Перебор вариантов является частью решения задач такого типа. Целью работы: создание многоуровневой системы задач по планиметрии для дифференцированного обучения старшеклассников решению задач по планиметрии, предоставление учащимся права выбора уровня задач.

Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее