Целью исследования учащихся 11 класса стал поиск точек соприкосновения геометрии и литературы на примерах творчества А.С. Пушкина и М.Ю. Лермонтова. Математика и искусство, что общего между ними? Можно ли выразить красоту с помощью формул и уравнений? Какие точки соприкосновения между ними можем мы найти? Самой яркой такой точкой является “золотое сечение”. Найдена связь математики с литературой через золотое сечение и числа Фибоначчи. Исследованы некоторые произведения А.С. Пушкина и М.Ю. Лермонтова с точки зрения математики. «Математический» метод даёт более обширное понимание произведений великих поэтов, открывает по-новому Пушкина и Лермонтова, выверивших «алгеброй гармонию».
Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы
Раздел: Иное

Презентация подготовлена к бинарному уроку (стереометрия+русский язык) в 10 классе. Урок является первым в теме "Перпендикулярность". Новые геометрические понятия становятся понятнее после их разбора с лексической и грамматической сторон.

Раздел: Иное

По данным статистической обработки результатов ЕГЭ планиметрические задачи вызывают трудности не только у слабых, но и у более подготовленных учащихся. Как правило, это задачи, при решении которых нужно применить число геометрических фактов из школьного курса в измененной ситуации, а вычисления не содержат длинных выкладок. Решая такую задачу, ученик должен в первую очередь проанализировать предложенную в задаче конфигурацию и увидеть те свойства, которые необходимы при решении. Выходом из этой ситуации является создание системы многоуровневых задач по основным разделам курса планиметрии. Повторение и обобщение знаний учащихся начинается с повторения теоретического материала. Затем учащимся предлагается решение задач базового уровня (З.З.). После отработки таких заданий, учащиеся самостоятельно или в группах отрабатывают навыки решения модифицированных задач (М.З.). Совместно с учителем рассматриваются способы решения планиметрических задач (Н.Н.) из открытого банка заданий ЕГЭ ( задание С 4). Как правило, эти задачи - многовариантные задачи по планиметрии. Перебор вариантов является частью решения задач такого типа. Целью работы: создание многоуровневой системы задач по планиметрии для дифференцированного обучения старшеклассников решению задач по планиметрии, предоставление учащимся права выбора уровня задач.

Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее