Презентация к уроку-лекции объяснения нового материала по теме "прямоугольного параллелепипеда, призмы, цилиндра"

Получите доступ ко всем материалам
Полный и неограниченный доступ ко всем материалам методической библиотеки на год с момента подачи и оплаты заявки. Доступ стоит 500 руб в год
Если Вы уже подавали заявку – тогда войдите или зарегистрируйтесь на сайте под тем же email-адресом, на который оформляли доступ
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Наши постоянные пользователи
БЕСПЛАТНО
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Похожие материалы

Автор: Епифанова Татьяна Николаевна, учитель математики ГБОУ СОШ №1358 г. Москвы. В этой статье рассматриваются два алгоритма решения ключевой задачи на вычисление угла между двумя плоскостями в многограннике, одна из которых проходит через заданную точку перпендикулярно заданной прямой. Изучение одного и того же типа задач разными методами очень полезное занятие, особенно при подготовке к экзаменам.

Задачи на готовых чертежах по теме "Средняя линия треугольника" для устной работы на уроках. Задачи по теме "Площадь"8 класс можно использовать для устной работы, а также для подготовки к ОГЭ, ЕГЭ.
Тест предназначен для индивидуальной работы. Формат документа - с печатной основой, чтобы учащиеся могли прямо на рисунках выполнять необходимые построения, дополнения. Формулировку заданий предлагает учитель: сначала это может быть просто: "Найти радиус круга", затем - "Найти площадь круга", затем - "Найти площадь сектора"
Комментарии
Это ваш материал?
Войдите или зарегистрируйтесь на сайте под тем email-адресом, под которым Вы загружали данный материал. После этого Вы сможете:
Заказать сертификат
Получить заказанные ранее