Материал составлен учителем математики мОУ СОШ №9 Курганинского района Краснодарского края Хачатурян Г.А.
Это мероприятие рекомендуется проводить в 8 классе ао геометрии после изучения темы "Четырехугольники". Данная игра позволяет пробудить интерес учащихся к изучению математики, расширить знания, повысить интеллект.
Также доступ ко всем материалам получают БЕСПЛАТНО
Участники Федерального учебно-методического объединения учителей
БЕСПЛАТНО
Участники объединения получают множество привилегий включая бесплатное прохождение любых курсов КПК и переподготовки (оплачивается только изготовление и отправка документов), бесплатные сертификаты, благодарственные письма, стажировки зарубеж, помощь в прохождении аттестации, юридическую помощь и многое другое.
Если Вы проходили профессиональную переподготовку (1 любой курс) или повышение квалификации (2 любых курса) в 21/22-м учебном году – Вы как наш постоянный клиент получаете много преимуществ, включая бесплатный доступ к трансляциям, получению сертификатов и многому другому.
Фрактал – сложная геометрическая фигура, обладающая свойством самоподобия. Из презентации можно узнать об общей теории фракталов, узнать различные сведения, понять, для чего они нужны и какие основные области их применения. Материал интересен как для внеклассной работы, так и для дополнительного материала при изучении геометрии.
Книга посвящена особому классу задач, который называют "софизмами". Суть их в том, что требуется найти ошибку в заведомо ложном доказательстве. Последнее иногда оказывается довольно сложно. Не случайно с греческого "софизм" можно перевести как хитрая выдумка, уловка. Некоторые софизмы возникли еще в античном мире, скорее всего в результате ошибок в серьезных рассуждениях. Но история происхождения большей их части навсегда останется тайной. Зачем нужны такие задачи? На этот вопрос ответил в предисловии к одной из своих книг известный популяризатор науки, профессор Геттингенского университета немецкий математик Карл Литцман: "Серьезное значение изучения ошибок и софизмов для воспитания математического мышления, как кажется автору, еще недостаточно осознано. Не только учитель должен иметь дело с ошибками, которые делают его ученики; сами учащиеся зачастую научаются большему на примере разъясненной ошибки, чем даже при правильном выполнении по готовым образцам задач и упражнений"